Purpose. The calculation methods improvement of the electric vehicle curve movement and the cost of electricity with the aim of performance and accuracy of calculations improving are considered in the paper. Methodology. The method is based upon the general principles of mathematical simulation, when a conceptual model of problem domain is created and then a mathematic model is formulated according to the conceptual model. Development of an improved conceptual model of electric vehicles motion is proposed and a corresponding mathematical model is studied. Findings. The authors proposed model in which the vehicle considers as a system of interacting point-like particles with defined interactions under the influence of external forces. As a mathematical model the Euler-Lagrange equation of the second kind is used. Conservative and dissipative forces affecting the system dynamics are considered. Equations for calculating motion of electric vehicles with taking into account the energy consumption are proposed. Originality. In the paper the conceptual model of motion for electric vehicles with distributed masses has been developed as a system of interacting point-like particles. In the easiest case the system has only one degree of freedom. The mathematical model is based on Lagrange equations. The shown approach allows a detailed and physically based description of the electric vehicles dynamics. The derived motion equations for public electric transport are substantially more precise than the equations recommended in textbooks and the reference documentation. The motion equations and energy consumption calculations for transportation of one passenger with a trolleybus are developed. It is shown that the energy consumption depends on the data of vehicle and can increase when the manload is above the certain level. Practical value. The authors received the equations of motion and labour costs in the calculations focused on the use of computer methods of numerical integration. The calculation expenses are reduced. The accuracy is improved; provided possibility to consider different parameters influencing the motion. A certain environmental effect can be achieved by orientation calculation methods for the practical development of the process charts of the movement of electric vehicle funds in different operating conditions at a constant change of filling the interior of the vehicle.

    Цель. В статье рассмотрено совершенствование методов расчета кривых движения электротранспорта и затрат электроэнергии с целью повышения производительности и точности расчетов. Методика. В основу методики положены общие принципы математического моделирования, когда создается содержательная модель предметной области, на основе которой строится математическая модель соответствующего математического аппарата. Рассмотрены вопросы построения содержательной модели движения средств электрического транспорта и соответствующей математической модели. Результаты. Авторами предложена модель, в которой транспортное средство представляется как система взаимодействующих материальных точек, между которыми установлены определенные типы связей, и на которую действуют внешние силы. Как математический аппарат использовано уравнение Эйлера-Лагранжа второго рода. Рассмотрены консервативные и диссипативные силы, обуславливающие динамику системы. Предложены формулы расчета кривых движения с учетом затрат электроэнергии. Научная новизна. В работе получена содержательная модель движения средств электротранспорта с распределенной массой, как системы взаимосвязанных материальных точек с наложенными на нее связями. В наиболее простом виде система имеет одну степень свободы. Математическая модель движения транспортного средства построена на основе уравнений Лагранжа. Указанный подход позволяет детально, физически обоснованно описать динамику средств электротранспорта. Получены существенно более точные уравнения расчета кривых движения и расхода электроэнергии, чем рекомендованные в учебных пособиях и нормативной документации для средств городского электротранспорта. Рассчитаны кривые движения и расхода электроэнергии на перевозку одного пассажира троллейбусом на участке маршрута. Показано, что они зависят от типа транспортного средства (ТС), а при наполнении выше определенного уровня могут увеличиваться. Практическая значимость. Авторами получены уравнения движения, ориентированные на использование компьютерных методов численного интегрирования. Уменьшены затраты труда при проведение расчетов, увеличена точность расчетов; обеспечены возможности учета различных факторов, влияющих на характер движения. Определенный энергоэкономический эффект может быть достигнут за счет направленности методов расчета на практическую разработку технологических карт движения средств электротранспорта в различных условиях эксплуатации при постоянном изменении наполнения салона транспортного средства.

    Мета. В статті розглянуто удосконалення методів розрахунку кривих руху електротранспорту та затрат електроенергії із метою підвищення продуктивності й точності розрахунків. Методика. В основу методики покладені загальні принципи математичного моделювання, коли створюється змістовна модель предметної області, на основі якої будується математична модель із певним математичним апаратом. Розглянуто питання побудови удосконаленої змістовної моделі руху засобів електричного транспорту та відповідної математичної моделі. Результати. Авторами запропонована модель, в якій транспортний засіб представляється системою взаємодіючих матеріальних точок, між якими встановлено певні типи зв’язків, та на яку діють зовнішні сили. Як математичний апарат використано рівняння Ейлера-Лагранжа другого роду. Розглянуто консервативні та дисипативні сили, що зумовлюють динаміку системи. Запропоновано формули розрахунку кривих руху з урахуванням витрат електроенергії. Наукова новизна. В роботі одержана змістовна модель руху засобів електротранспорту з розподіленою масою як системи взаємозв’язаних матеріальних точок із накладених на неї зв’язками. В найбільш простому вигляді система має одну ступінь вільності. Математична модель руху транспортного засобу побудована на основі рівнянь Лагранжа. Вказаний підхід дозволяє детально, фізично обґрунтовано описати динаміку засобів електротранспорту. Для засобів міського електротранспорту одержані суттєво точніші рівняння розрахунку кривих руху, ніж рекомендовані в навчальних посібниках та нормативній документації. Розраховано криві руху та витрати електроенергії на перевезення одного пасажира тролейбусом на ділянці маршруту. Показано, що вони залежать від типу транспортного засобу (ТЗ), а при наповненні вище певного рівня можуть збільшуватися. Практична значимість. Авторами одержані рівняння руху, орієнтовані на використання комп’ютерних методів числового інтегрування. Зменшено затрати праці на проведення розрахунків; збільшено точність розрахунків; забезпечено можливості врахування різних чинників, що впливають на характер руху. Певний енергозберігаючий ефект уможливлений авторами за рахунок спрямованості методів розрахунку на практичну розробку технологічних карт руху засобів електротранспорту в умовах експлуатації при постійній зміні наповнення салону транспортного засобу.


    Access

    Download


    Export, share and cite



    Title :

    THE CONTENT MODEL AND THE EQUATIONS OF MOTION OF ELECTRIC VEHICLE.
    СОДЕРЖАТЕЛЬНАЯ МОДЕЛЬ И УРАВНЕНИЯ ДВИЖЕНИЯ ЭЛЕКТРИЧЕСКОГО ТРАНСПОРТА.
    ЗМІСТОВНА МОДЕЛЬ ТА РІВНЯННЯ РУХУ ЕЛЕКТРИЧНОГО ТРАНСПОРТУ


    Contributors:


    Publication date :

    2015-07-02


    Remarks:

    Science and Transport Progress ; No. 3(57) (2015); 97-106



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Ukrainian