In semi-autonomous vehicles (SAE level 3) that requires drivers to takeover (TO) the control in critical situations, a system needs to judge if the driver have enough situational awareness (SA) for manual driving. We previously developed a SA estimation system that only used driver’s glance data. For deeper understanding of driver’s SA, the system needs to evaluate the relevancy between driver’s glance and surrounding vehicle and obstacles. In this study, we thus developed a new SA estimation model considering driving-relevant objects and investigated the relationship between parameters. We performed TO experiments in a driving simulator to observe driver’s behavior in different position of surrounding vehicles and TO performance such as the smoothness of steering control. We adopted support vector machine to classify obtained dataset into safe and dangerous TO, and the result showed 83% accuracy in leave-one-out cross validation. We found that unscheduled TO led to maneuver error and glance behavior differed from individuals.
Development of a Situational Awareness Estimation Model Considering Traffic Environment for Unscheduled Takeover Situations
Int. J. ITS Res.
International Journal of Intelligent Transportation Systems Research ; 19 , 1 ; 167-181
2021-04-01
15 pages
Article (Journal)
Electronic Resource
English
Autonomous driving , Situational awareness , Cognitive behavior , Unscheduled takeover Engineering , Electrical Engineering , Automotive Engineering , Robotics and Automation , Computer Imaging, Vision, Pattern Recognition and Graphics , Civil Engineering , User Interfaces and Human Computer Interaction
British Library Conference Proceedings | 2019
|Situational Awareness in The Future Air Traffic Control Environment
British Library Conference Proceedings | 1992
|Situational Awareness in Air Traffic Control
British Library Conference Proceedings | 1994
|Air traffic situational awareness using HF communication
European Patent Office | 2020
|