We develop a Gravity Assist Mapping to quantify the effects of a flyby in a two-dimensional circular restricted three-body situation based on Gaussian Process Regression (GPR). This work is inspired by the Keplerian Map and Flyby Map. The flyby is allowed to occur anywhere above 300 km altitude at the Earth in the system of Sun-(Earth+Moon)-spacecraft, whereas the Keplerian map is typically restricted to the cases outside the Hill sphere only. The performance of the GPR model and the influence of training samples (number and distribution) on the quality of the prediction of post-flyby orbital states are investigated. The information provided by this training set is used to optimize the hyper-parameters in the GPR model. The trained model can make predictions of the post-flyby state of an object with an arbitrary initial condition and is demonstrated to be efficient and accurate when evaluated against the results of numerical integration. The method can be attractive for space mission design.


    Access

    Download


    Export, share and cite



    Title :

    A Gravity Assist Mapping Based on Gaussian Process Regression


    Additional title:

    J Astronaut Sci


    Contributors:
    Liu, Yuxin (author) / Noomen, Ron (author) / Visser, Pieter (author)

    Published in:

    Publication date :

    2021-03-01


    Size :

    25 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English






    Aircraft centre-of-gravity estimation using Gaussian process regression models

    Yang, Xiaoke / Luo, Mingqiang / Zhang, Jing et al. | IEEE | 2016


    GRAVITY ASSIST SYSTEM

    MCMUNN CLAYTON WILFORD RUSSELL / NILSSON JAN PETER | European Patent Office | 2018

    Free access

    GRAVITY ASSIST SYSTEM

    MCMUNN CLAYTON WILFORD RUSSELL / NILSSON JAN PETER | European Patent Office | 2018

    Free access

    Gravity-Assist Manoeuvre

    Rauschenbakh, Boris V. / Ovchinnikov, Michael Yu. / McKenna-Lawlor, Susan | Springer Verlag | 2003