A theoretical prediction of ignition modes in shock tubes relevant to engine conditions is proposed and validated with a wide range of shock tube experiment data. The predictive Sankaran number, Sa p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Sa}_p}$$\end{document}, is adapted to distinguish between the weak and strong ignition modes. The non-ideal temperature and pressure rise inherently occurring in combustion devices is considered in the formulation of Sa p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Sa}_p}$$\end{document}. The Sa p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Sa}_p}$$\end{document} criterion is then validated by the experimental data in shock tubes for a number of fuels exhibiting negative temperature coefficient (NTC) and non-NTC behavior. It is demonstrated that the Sa p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Sa}_p}$$\end{document} criterion can accurately predict the weak and strong ignition modes regardless of the NTC and non-NTC fuels over a wide range of pressure and temperature. Sa p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Sa}_p}$$\end{document} = 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$= 1$$\end{document} serves as a reliable marker to delineate the boundary between the strong ignition ( Sa p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Sa}_p}$$\end{document} < 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$< 1$$\end{document}) and weak ignition ( Sa p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Sa}_p}$$\end{document} > 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$> 1$$\end{document}). As inspired by the newly-developed Sa p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{{Sa}_p}$$\end{document} criterion in shock tube, it strongly suggests that the sensitivity of ignition delay variation in non-constant volume reactors such as the polytropic compression/expansion heating effect in an internal combustion engine and in a rapid compression machine (RCM) should be incorporated in evaluating an ignition criterion to better predict the ignition modes.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Prediction of Ignition Modes in Shock Tubes Relevant to Engine Conditions


    Additional title:

    Energy, Environment, and Sustainability


    Contributors:


    Publication date :

    2021-12-14


    Size :

    25 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    DME-Propane Ignition Delay Time Measurements at Mixing Controlled Compression Ignition Engine-Relevant Conditions

    Urso, Justin / Pierro, Michael / Khaleel Rahman, Ramees et al. | SAE Technical Papers | 2023


    Ammonia Ignition Delay Times at Turbine-relevant Conditions in a Shock Tube

    Kelly, Tyler M. / Urso, Justin J. / Pierro, Michael et al. | AIAA | 2024


    Glow-plug ignition of ethanol fuels under diesel engine relevant thermodynamic conditions

    Adomeit,P. / Jakob,M. / Kolbeck,A. et al. | Automotive engineering | 2011


    Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

    Kolbeck, Andreas / Jakob, Markus / Adomeit, Philipp et al. | SAE Technical Papers | 2011


    Rocket engine ignition structural shock

    Hoult, Charles P. / Fuentes, Armando / Tran, Hien | IEEE | 2016