Abstract This paper deals with the effect of steel fiber reinforcement on the behavior of Self-Compacting Concrete (SCC) beams. Bending tests were carried out to examine the effect of low fiber content (0.25% by volume) on the flexural behavior of beams with different amounts of steel rebar reinforcement. The study compares the behavior of reinforced concrete beams cast either with control SCC and the one of Fiber-Reinforced Self-Compacting Concrete (FRSCC). Fibers used were made of stainless amorphous metal. Their influence was studied through the global and local mechanical responses of the beams. The results show that fiber reinforcement allows the control of cracking to be improved. Yielding, ductility and load bearing capacity are not modified by the fiber reinforcement; its effects are limited to the kinetics and distribution of cracks. If it was observed that the used fiber content reduced stresses in the stirrups, they could not be considered as a solution to replace stirrups. However, their ability to transfer tensile stress through a crack provided greater beam stiffness, notably with a low steel bar reinforcement ratio. It was concluded that stainless steel fiber reinforcement is a suitable solution to control crack width in reinforced concrete elements in aggressive environments with respect to the limitations imposed by design codes such as the European code Eurocode 2.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Flexural and shear behavior of steel fiber reinforced SCC beams


    Contributors:

    Published in:

    Publication date :

    2013-08-17


    Size :

    11 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Flexural and shear behavior of steel fiber reinforced SCC beams

    Fritih, Youcef / Vidal, Thierry / Turatsinze, Anaclet et al. | Online Contents | 2013


    Flexural Behavior of Corroded Reinforced Concrete Beams

    Gu, X.L. / Zhang, W.P. / Shang, D.F. et al. | British Library Conference Proceedings | 2010


    Flexural Behavior of Layered PVA Fiber/Steel Fiber Reinforced Cementitious Composite Plates

    Guo, Aofei / Zhou, Fen / Du, Yunxing et al. | Springer Verlag | 2022



    The Effects of Steel Fiber and Nano-SiO2 on the Cyclic Flexural Behavior of Reinforced LWAC Beams

    Akbarpour, Soodeh / Dabbagh, Hooshang / Tavakoli, Hamid Reza | Springer Verlag | 2018