Calibrated confidence estimates obtained from neural networks are crucial, particularly for safety-critical applications such as autonomous driving or medical image diagnosis. However, although the task of confidence calibration has been investigated on classification problems, thorough investigations on object detection and segmentation problems are still missing. Therefore, we focus on the investigation of confidence calibration for object detection and segmentation models in this chapter. We introduce the concept of multivariate confidence calibration that is an extension of well-known calibration methods to the task of object detection and segmentation. This allows for an extended confidence calibration that is also aware of additional features such as bounding box/pixel position and shape information. Furthermore, we extend the expected calibration error (ECE) to measure miscalibration of object detection and segmentation models. We examine several network architectures on MS COCO as well as on Cityscapes and show that especially object detection as well as instance segmentation models are intrinsically miscalibrated given the introduced definition of calibration. Using our proposed calibration methods, we have been able to improve calibration so that it also has a positive impact on the quality of segmentation masks as well.


    Access

    Download


    Export, share and cite



    Title :

    Confidence Calibration for Object Detection and Segmentation



    Published in:

    Publication date :

    2022-06-18


    Size :

    26 pages




    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English





    MULTICLASS CONFIDENCE AND LOCALIZATION CALIBRATION FOR OBJECT DETECTION

    PATHIRAJA BIMSARA / GUNAWARDHANA MALITHA / KHAN MUHAMMAD HARIS | European Patent Office | 2025

    Free access


    OBJECT DETECTION AND DETECTION CONFIDENCE SUITABLE FOR AUTONOMOUS DRIVING

    KOIVISTO TOMMI / JANIS PEKKA / KUOSMANEN TERO et al. | European Patent Office | 2025

    Free access


    Object detection and detection confidence suitable for autonomous driving

    KOIVISTO TOMMI / JANIS PEKKA / KUOSMANEN TERO et al. | European Patent Office | 2024

    Free access