Although the time-domain aeroelastic analysis of the fin-actuator system is accurate, it is very time-consuming. Some work in the past used the describing function method to calculate the dynamic stiffness of the actuator, and then obtained the aeroelastic stability of the system in the frequency domain. This greatly shortened the time, but there was a loss in accuracy. In order to improve the accuracy and speed up the calculation to a certain extent, this paper uses high order harmonics to describe the response of the system. The frictional hysteresis loop is difficult to obtain a closed-form solution in the frequency domain. In this paper, a truncated Taylor series expansion is used to smooth the LuGre friction model so that the harmonic balance method can be used. The pseudo-arclength continuation method is used to solve the problem, and the bifurcation diagram of the limit cycle of the system is obtained. The results show that the method used in this paper has achieved a balance between time and accuracy in calculating the aeroelastic stability of the fin-actuator system.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Aeroelastic Characteristics of Fin-Actuator System Based on High Order Harmonic Balance Method and Pseudo-arclength Continuation


    Additional title:

    Lect. Notes Electrical Eng.


    Contributors:
    Lu, Jin (author) / Wu, Zhigang (author) / Yang, Chao (author)


    Publication date :

    2021-11-02


    Size :

    12 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English