At the beginning of the development of the theory of classical calculus (called integer-order calculus in this book), the British scientist Isaac Newton and the German mathematician Gottfried Wilhelm Leibniz used different symbols for different orders of derivatives. For example, Newton used the notation y ˙ ( x ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{y}(x)$$\end{document}, y ¨ ( x ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{y}(x)$$\end{document} and y ( x ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dddot{y}(x)$$\end{document}, while Leibniz used the notation d n y ( x ) / d x n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{d}^n y(x)/\textrm{d}x^n$$\end{document}, where n is a positive integer. A natural question is how to extend n into fractions or even complex numbers. In a letter written by the French mathematician Marquis de l’Hôpital to Leibniz in 1695, he asked question “what would be the meaning if n = 1 / 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 1/2$$\end{document} in the d n y ( x ) / d x n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{d}^n y(x)/\textrm{d}x^n$$\end{document} notation”. In a letter dated 30 September 1695, Leibniz replied, “Thus it follows that d 1 / 2 x \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{d}^{1/2} x$$\end{document} will be equal to x d x : x \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\sqrt{\textrm{d}x:x}$$\end{document}. This is an apparent paradox from which, one day, useful consequences will be drawn” [1]. In this chapter, a brief historic view of fractional calculus is presented. The tools for fractional calculus are summarized.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Introduction to Fractional Calculus


    Contributors:
    Xue, Dingyü (author) / Bai, Lu (author)

    Published in:

    Fractional Calculus ; Chapter : 1 ; 1-17


    Publication date :

    2024-05-04


    Size :

    17 pages




    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English





    PID controller tuning using fractional calculus concepts

    Barbosa, Ramiro / Tenreiro Machado, J. A. / Ferreira, Isabel M. | BASE | 2004

    Free access

    Applied Fractional Calculus in Identification and Control

    Mehta, Utkal ;Bingi, Kishore ;Saxena, Sahaj | TIBKAT | 2022


    Definitions and Numerical Evaluations of Fractional Calculus

    Xue, Dingyü / Bai, Lu | Springer Verlag | 2024