Most visual simultaneous localization and mapping (SLAM) systems use either monocular or stereo sensor information. However, in some situations, depth information may not be available for each camera frame, for example, when two cameras with different frame rates are used or the computer used does not have the computational resources to calculate a depth map for each camera frame. This work presents two novel approaches by enhancing either each n k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_k$$\end{document}-th keyframe or each n f \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_f$$\end{document}-th camera frame periodically with depth information. The experimental results on the KITTI visual odometry benchmark show that both approaches improve scale drift compared to monocular SLAM. In terms of trajectory accuracy, the periodic camera frame enhancement outperforms the other novel approach. Even if only a small number of camera frames is enhanced with depth information (10% to 20%), this approach achieves comparable or more accurate results than stereo trajectories. Therefore, this work introduces novel approaches for depth enhancement in visual SLAM systems that do not require depth information at every camera frame. This allows systems with limited access to measured depth or limited computational resources to improve on scale drift.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Novel Approaches for Periodic Depth Enhancement in Visual SLAM


    Additional title:

    Mechan. Machine Science


    Contributors:

    Conference:

    International Conference on Robotics in Alpe-Adria Danube Region ; 2022 ; Klagenfurt, Austria June 08, 2022 - June 10, 2022



    Publication date :

    2022-04-23


    Size :

    8 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Novel Approaches for Periodic Depth Enhancement in Visual SLAM

    Sandfuchs, Stephan / Schmidt, Marco / Frochte, Jörg | TIBKAT | 2022


    ASD-SLAM: A NOVEL ADAPTIVE-SCALE DESCRIPTOR LEARNING FOR VISUAL SLAM

    Ma, Taiyuan / Wang, Yafei / Wang, Zili et al. | British Library Conference Proceedings | 2020


    ASD-SLAM: A Novel Adaptive-Scale Descriptor Learning for Visual SLAM

    Ma, Taiyuan / Wang, Yafei / Wang, Zili et al. | IEEE | 2020


    Visual SLAM: Why filter?

    Strasdat, H. / Montiel, J. M. / Davison, A. J. | British Library Online Contents | 2012


    RWT-SLAM: Robust Visual SLAM for Weakly Textured Environments

    Peng, Qihao / Zhao, Xijun / Dang, Ruina et al. | IEEE | 2024