The present study computationally investigates the characteristics of unsteady aerodynamic forces around an oscillating airfoil in the transonic flow regime. Particular attention is paid to the role of shock wave and shock-induced boundary layer separation in unsteady aerodynamics. The Reynolds-averaged compressible Navier–Stokes equations are solved with SA and SST turbulence models. A well-known forced-pitching NACA64A010 airfoil experiment (Sanford and Gerald in AIAA J 11:1306–1312, 1980, [6]) is simulated, and the freestream Mach number, Reynolds number, and reduced frequency are set to 0.8, 1.2 × 107, and 0.2, respectively. The pitching airfoil with mean angles of attack of 0°, 2°, 4°, and 6° having the amplitude of 1° is parametrically simulated. It is observed that at the mean angle of attack of 0°, there is a phase delay of the lift coefficient against the angle of attack due to the delay of a shock wave movement over the airfoil surface. In contrast, a phase-advanced feature of unsteady aerodynamics appears in increasing the mean angle of attack (e.g., 4° and 6°). There is a phase transition of unsteady aerodynamics from the delay to advance, significantly caused by the appearance of shock-induced boundary-layer separation. The mean angle of attack around 3° may correspond to a transition condition between the phase-delayed and phase-advanced features. The present study demonstrated that the trend of the unsteady aerodynamic characteristics around the transonic oscillating airfoils largely changes with the mean angle of attack. The shock wave, the shock-induced separation, and their interaction play a crucial role in determining the unsteady aerodynamics such as the phase-delayed or the phase-advanced features.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Computational Study on Unsteady Aerodynamic Forces Around a Pitching Airfoil with Shock and Shock-Induced Separation


    Additional title:

    Lect. Notes Electrical Eng.


    Contributors:

    Conference:

    Asia-Pacific International Symposium on Aerospace Technology ; 2021 ; Korea (Republic of) November 15, 2021 - November 17, 2021



    Publication date :

    2022-08-31


    Size :

    8 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Unsteady Aerodynamics Around a Pitching Airfoil with Shock and Shock-Induced Boundary-Layer Separation

    Oyeniran, Noah D. / Miyake, Toma / Terashima, Hiroshi et al. | AIAA | 2022


    Unsteady aerodynamic forces at low airfoil pitching rates

    ALBERTSON, JULIE / TROUTT, TIMOTHY / KEDZIE, CHRISTOPHER | AIAA | 1988



    Aerodynamic parameters for a pitching airfoil

    SIURU, JR., W. / WALKER, J. / CHOU, D. | AIAA | 1987


    Two-dimensional unsteady leading-edge separation on a pitching airfoil

    Choudhuri, P.G. / Knight, D.D. / Visbal, M.R. | Tema Archive | 1994