This paper presents a parameterized structural track model for the simulation of dynamic vehicle-turnout interaction in a multi body simulation environment. The model is demonstrated by performing simulations for different vehicle speeds, crossing geometries and fixations between crossing rail and sleepers with different stiffness. Results are presented for dynamic wheel-rail contact forces, bending moments in crossing rail and sleepers and sleeper-ballast contact pressure. The main conclusions are that (a) the peak dynamic bending moment in the sleeper under the crossing transition is significantly higher with a stiff direct fixing compared to a softer indirect fixing and (b) the structural loading in terms of bending moment in the crossing rail, bending moment in the underlaying sleeper and sleeper-ballast contact pressure increases proportionally and significantly with increased impact angle and vehicle speed for wheels passing over the crossing transition.
A Parameterized Turnout Model for Simulation of Dynamic Vehicle-Turnout Interaction with an Application to Crossing Geometry Assessment
Lect.Notes Mechanical Engineering
The IAVSD International Symposium on Dynamics of Vehicles on Roads and Tracks ; 2019 ; Gothenburg, Sweden August 12, 2019 - August 16, 2019
2020-02-13
8 pages
Article/Chapter (Book)
Electronic Resource
English
Turnout Geometry Optimization with Dynamic Simulation of Track and Vehicle
British Library Conference Proceedings | 2000
|European Patent Office | 2021
|