Abstract The aeroacoustic phenomena characteristic of a pusher-propeller configuration and their aerodynamic causes are discussed and analysed. The configuration under study is an industrially relevant design with a wing-mounted pusher propeller, which features a close coupling of the turboshaft engines exhaust nozzles and a five-bladed propeller. The coupling of an Actuator Disc model and unsteady free wake panel method is employed for the computation of the propeller unsteady aerodynamic force in “pusher” installations. The acoustic integration formulation based on Ffowcs-Williams/Hawkings equations is used to compute the sound propagation into the far field. A detailed comparison of the results from current fast coupling method with those of high-fidelity unsteady Reynolds averaged Navier–Stokes simulation will be presented and the differences between the two approaches are discussed. Furthermore, the possible noise reduction through a redesigned engine exhaust nozzle is discussed.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Fast simulation of noise radiation and reduction from installed pusher propeller aircraft


    Contributors:

    Published in:

    CEAS Aeronautical Journal ; 4 , 4 ; 443-458


    Publication date :

    2013-07-28


    Size :

    16 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English







    AIRCRAFT WITH PUSHER PROPELLER

    TIGHE JAMES JOSEPH / TZARNOTZKY URI / LONG GEOFFREY ALAN | European Patent Office | 2023

    Free access

    Aircraft with pusher propeller

    TIGHE JAMES JOSEPH / TZARNOTZKY URI / LONG GEOFFREY ALAN | European Patent Office | 2024

    Free access