Numerical simulation and icing wind tunnel test were carried out to understand the anti-icing performance of engine inlet cone by hot air film. The cones with different slots and holes were investigated under the typical icing conditions. For slot film structures, as the inclination angle decreases from 90° to 30°, the heating efficiency increases about 17% and the amount of ice decreases about 26% under the same hot air mass flow rate. Compared with inclination angle, the effect of slot width on heating and accretion is much weaker. For circular hole, as the diameter of the holes decrease from 6 to 3 mm, the averaged wall temperature increases by about 2–5 °C, and the amount of ice decreases more than 50%. The results of icing wind tunnel tests agree well with numerical results. Increasing the temperature and flow rate of hot air can obviously reduce the amount of ice on the cone. Overall, reducing the slot inclination angle and diameter of circular hole can both improve anti-icing performance.
Anti-icing Performance of Engine Inlet Cone by Hot Air Film
Lect. Notes Electrical Eng.
Asia-Pacific International Symposium on Aerospace Technology ; 2021 ; Korea (Republic of) November 15, 2021 - November 17, 2021
The Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Volume 1 ; Chapter : 12 ; 161-172
2022-08-31
12 pages
Article/Chapter (Book)
Electronic Resource
English
European Patent Office | 2021
|Thermal analysis of engine inlet anti-icing systems
AIAA | 1990
|Thermal analysis of engine inlet anti-icing systems
AIAA | 1989
|Thermal analysis of engine inlet anti-icing systems
Tema Archive | 1988
|