Abstract Reduction of CO2 emissions produced by road traffic is a paramount objective which the automobile industry has to resolve. An average fleet emissions target of 95g/km CO2 has to be achieved within the European Union until the year 2020/21. In order to comply with this demanding emissions standard, electrification of conventional combustion engine dominant drive trains is inevitable. Alternatively an increase of batteryelectric- vehicles (BEV) in the OEM’s fleet can contribute significantly towards the aimed CO2 reduction. Both strategies mentioned above – the electrification of the combustion engine dominant drive train with hybrid vehicle topologies as well as the increase of BEVs within the OEM’s fleet share – require new, holistic methods for the drive-train design to assure cost efficiency and end-customer’s vehicle requirements. Numerical development methods, which will be introduced in this paper, can be applied to support the product development in decision making by quantifying the interdependencies between the electric, electro-mechanical and electro-chemical components on vehicle system level.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Holistic approach for the design of electrical powertrains for electric and plug-in-hybrid vehicles applying the methodology MultiObjective Optimization


    Contributors:


    Publication date :

    2016-01-01


    Size :

    18 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English





    Design, modeling and optimization of hybrid-electric powertrains

    Brahma, A. / Glenn, B. / Rizzoni, G. et al. | SAE Technical Papers | 1999


    AC powertrains for electric vehicles

    Hamilton,W. | Automotive engineering | 1987


    Hybrid electric locomotive powertrains

    Ruoyu Hou, / Yinye Yang, / Emadi, Ali | IEEE | 2014


    Electric and Hybrid Electric Powertrains

    Al-Adsani, Ahmad S. / Beik, Omid | Springer Verlag | 2021