Jumping is a good solution for small robots over obstacles. Most of the current jumping robots are not energy store adjustable due to the design of the energy storage elements and structures, which limits the effective working space of the robot. The locust is good at jumping. Thanks to the excellent structure of the hind legs, the locust can change the degree of compression of the simi-lunar process (SLP) and change the energy storage while maintaining the same jumping stance. Herein, we design a locust-inspired energy storage joint and verified its function on a jumping robot. The motors and wires were used to imitate the muscles and the torsion springs were used to imitate SLP. To accurately describe the energy stored, a static model of the torsion springs was developed. Furthermore, the number of motor revolutions and the stored energy value were also calculated and could be used for subsequent precise control. Six jumping experiments with different compression angles for torsion springs proved the feasibility of the static model. This locust-inspired energy storage joint is the basis for the next robot capable of the omnidirectional, continuous autonomous jumping.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Locust-Inspired Energy Storage Joint for Variable Jumping Trajectory Control


    Additional title:

    Lect.Notes Computer


    Contributors:
    Yang, Huayong (editor) / Liu, Honghai (editor) / Zou, Jun (editor) / Yin, Zhouping (editor) / Liu, Lianqing (editor) / Yang, Geng (editor) / Ouyang, Xiaoping (editor) / Wang, Zhiyong (editor) / Yang, Yongzun (author) / Feng, Zhiyuan (author)

    Conference:

    International Conference on Intelligent Robotics and Applications ; 2023 ; Hangzhou, China July 05, 2023 - July 07, 2023



    Publication date :

    2023-10-16


    Size :

    10 pages




    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    A Locust-Inspired Energy Storage Joint for Variable Jumping Trajectory Control

    Yang, Yongzun / Feng, Zhiyuan / Jin, Cheng et al. | TIBKAT | 2023


    Preliminary Design Concept of Locust Inspired Jumping Moon Robot Swarm

    Herkenhoff, Brenden / Lanctot, Sara / Bjorkman, Trent et al. | AIAA | 2021


    PRELIMINARY DESIGN CONCEPT OF LOCUST INSPIRED JUMPING MOON ROBOT SWARM

    Herkenhoff, Brenden / Lanctot, Sara / Bjorkman, Trent et al. | TIBKAT | 2021


    Six-foot locust-imitating jumping robot

    SONG YI / QIU YE / TIAN YE et al. | European Patent Office | 2024

    Free access

    Locust-jumping-imitating robot rear leg mechanism

    BAI YING / MO LIPING / JIN XUDONG et al. | European Patent Office | 2021

    Free access