When deploying machine learning models in high-stakes robotics applications, the ability to detect unsafe situations is crucial. Early warning systems can provide alerts when an unsafe situation is imminent (in the absence of corrective action). To reliably improve safety, these warning systems should have a provable false negative rate; i.e. of the situations that are unsafe, fewer than ϵ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} will occur without an alert. In this work, we present a framework that combines a statistical inference technique known as conformal prediction with a simulator of robot/environment dynamics, in order to tune warning systems to provably achieve an ϵ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} false negative rate using as few as 1 / ϵ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\epsilon $$\end{document} data points. We apply our framework to a driver warning system and a robotic grasping application, and empirically demonstrate guaranteed false negative rate while also observing low false detection (positive) rate.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Sample-Efficient Safety Assurances Using Conformal Prediction


    Additional title:

    Springer Proceedings in Advanced Robotics


    Contributors:

    Conference:

    International Workshop on the Algorithmic Foundations of Robotics ; 2022 ; , MD, USA June 22, 2022 - June 24, 2022



    Publication date :

    2022-12-15


    Size :

    21 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Sample-Efficient Safety Assurances Using Conformal Prediction

    Luo, Rachel / Zhao, Shengjia / Kuck, Jonathan et al. | TIBKAT | 2023


    Assurances

    Online Contents | 1995


    Evénement. Les assurances

    Online Contents | 1997


    Les assurances aériennes

    Blum, René | SLUB | 1930