Abstract With the increasing availability of Cooperative Intelligent Transport Systems, the Local Dynamic Map (LDM) is becoming a key technology for integrating static, temporary, and dynamic information in a geographical context. However, existing ideas do not leverage the full potential of the LDM approach, as an LDM contains streaming data and varying implicit information which are not captured by current models. We aim to provide a semantically enriched LDM that applies Semantic Web technologies, in particular ontologies, in combination with spatial stream databases. This allows us to define an enhanced world model, to derive model properties, to infer new information, and to offer expressive query capabilities over streams. We introduce our envisioned architecture which includes an LDM ontology, an integration and annotation framework, and a stream query answering component. We also sketch three application scenarios that illustrate the usability and benefits of our approach, thus we provide an in-depth validation of the scenarios in an experimental prototype.
Towards a Semantically Enriched Local Dynamic Map
International Journal of Intelligent Transportation Systems Research ; 17 , 1 ; 32-48
2018-03-26
17 pages
Article (Journal)
Electronic Resource
English
Cooperative Intelligent Transport Systems (C-ITS) , Local dynamic map , Ontologies , Semantic web technologies , Streaming data Engineering , Electrical Engineering , Automotive Engineering , Robotics and Automation , Computer Imaging, Vision, Pattern Recognition and Graphics , Civil Engineering , User Interfaces and Human Computer Interaction
Semantically Enriched Multi-Modal Routing
Springer Verlag | 2014
|Semantically Enriched Multi-Modal Routing
British Library Online Contents | 2016
|Semantically-enhanced information extraction
IEEE | 2011
|