The stage optimization of serially staged rocket vehicles is discussed in this chapter.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} The tabled data of orbital launch vehicles and stage structural coefficients \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}’s indicate that LOX/Kerosene and LOX/LH2 vehicles are preferred for large payloads. And, solid propellant stages are of high \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}’s. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} The gravity- and drag-free optimization along with its two variants, marked-up terminal velocity and scaled-up stage mass, are discussed using Lagrange multipliers. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} The different layers of the Earth’s atmosphere up to 10,000 km are detailed. The equation for density estimation in the homosphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le h \le 120\,\textrm{km}$$\end{document} is derived. The atmospheric continuum, Knudsen number, and gravity variation with altitude are explained. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} Considering drag and gravity, the equations of motion in polar coordinates are drawn for serially staged rocket vehicles. To enable trajectory optimization, the equations for vertical climb, constant pitch angle maneuver, gravity turn, bilinear and linear tangent steering, and coasting are drawn. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} The ascent of sounding rockets is analyzed considering burnout-velocity and -altitude, and coasting height. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} Under the sections worked examples and at the end, a large number of concept questions and numerical problems with answers are included.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Stage Optimization and Trajectories


    Contributors:

    Published in:

    Rocket Propulsion Primer ; Chapter : 5 ; 321-407


    Publication date :

    2024-09-28


    Size :

    87 pages




    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Optimization of Trajectories

    P. Contensou | NTIS | 1969


    OPTIMIZATION OF STOCHASTIC TRAJECTORIES

    BERMAN, L. J. / KRUPP, R. / STEINKER, G. E. | AIAA | 1963


    Reentry Trajectories Optimization Problems

    Yaroshevsky, V. A. / Ivanchikhina, L. I. / International Astronautical Federation | British Library Conference Proceedings | 1994


    Optimization Of Simulated Trajectories

    Brauer, Garry L. / Olson, David W. / Stevenson, Robert | NTRS | 1989