The stage optimization of serially staged rocket vehicles is discussed in this chapter.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} The tabled data of orbital launch vehicles and stage structural coefficients \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}’s indicate that LOX/Kerosene and LOX/LH2 vehicles are preferred for large payloads. And, solid propellant stages are of high \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}’s. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} The gravity- and drag-free optimization along with its two variants, marked-up terminal velocity and scaled-up stage mass, are discussed using Lagrange multipliers. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} The different layers of the Earth’s atmosphere up to 10,000 km are detailed. The equation for density estimation in the homosphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le h \le 120\,\textrm{km}$$\end{document} is derived. The atmospheric continuum, Knudsen number, and gravity variation with altitude are explained. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} Considering drag and gravity, the equations of motion in polar coordinates are drawn for serially staged rocket vehicles. To enable trajectory optimization, the equations for vertical climb, constant pitch angle maneuver, gravity turn, bilinear and linear tangent steering, and coasting are drawn. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} The ascent of sounding rockets is analyzed considering burnout-velocity and -altitude, and coasting height. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bullet $$\end{document} Under the sections worked examples and at the end, a large number of concept questions and numerical problems with answers are included.
Stage Optimization and Trajectories
Rocket Propulsion Primer ; Chapter : 5 ; 321-407
2024-09-28
87 pages
Article/Chapter (Book)
Electronic Resource
English
NTIS | 1969
|OPTIMIZATION OF STOCHASTIC TRAJECTORIES
AIAA | 1963
|Reentry Trajectories Optimization Problems
British Library Conference Proceedings | 1994
|Optimization Of Simulated Trajectories
NTRS | 1989
|Optimization of three-dimensional range and ascent trajectories of a two-stage hypersonic vehicle
Online Contents | 1996
|