To address the issue of the unclear factors affecting the perception performance of biomimetic tactile sensing system, FEM and cantilever beam model are firstly employed to analyze the effects of the physical properties of biomimetic multi-layer elastomer on the deformation and vibration tactile signals. Next, the impacts of physical properties and data processing methods on the perception performance are evaluated through fabrics recognition experiments sensitive to vibration signals. The results indicate that simultaneous change in the hardness and thickness of the multi-layer elastomer leads to stable tactile perceptual capability. Detrending data improves the consistency in temporal sequence , but weakens the continuity, and exhibits various impacts on different perception tasks. Taking absolute value helps to focus on the vibration characteristic. Additionally, based on the physical properties changes during human skin growth, sorting the corresponding elastomers shows nearly consistent tactile perception performance, suggesting a similar regularity of maintaining tactile perceptual capability throughout human skin growth. This study provides new ideas for optimizing the biomimetic tactile sensors design and exploring the factors that affect human tactile perceptual capability.
Factors Affecting the Perception Performance of Biomimetic Tactile Sensing System
Lect.Notes Computer
International Conference on Intelligent Robotics and Applications ; 2023 ; Hangzhou, China July 05, 2023 - July 07, 2023
2023-10-21
12 pages
Article/Chapter (Book)
Electronic Resource
English
Tactile sensing , Tactile perception , Biomimetic sensing Computer Science , Artificial Intelligence , Software Engineering/Programming and Operating Systems , Computer Applications , Computer Communication Networks , Special Purpose and Application-Based Systems , User Interfaces and Human Computer Interaction
Wearable traffic environment tactile perception auxiliary driving system
European Patent Office | 2022
|