In this paper, we investigate an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\epsilon }$$\end{document}-Nash Equilibrium seeking problem subject to external disturbance. The game is played by multi-agent with two order integrators under full information. In order to estimate and remedy external disturbance, a static extended stubborn state observer is proposed. An \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\epsilon }$$\end{document}-Nash Equilibrium seeking strategy is proposed to regulate the action of each agent to around Nash Equilibrium points regard to full information. Finally, a numerical example is presented to verify the validity of the proposed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\epsilon }$$\end{document}-Nash equilibrium seeking method.
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\epsilon }$$\end{document}-Nash Equilibrium Seeking for Two Order Multi-agent with Disturbance Rejection
Lect. Notes Electrical Eng.
2021-10-30
12 pages
Article/Chapter (Book)
Electronic Resource
English
<inline-formula><alternatives><tex-math>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\epsilon }$$\end{document}</tex-math><inline-graphic></inline-graphic></alternatives></inline-formula>-Nash equilibrium , Game theory , Extended state observer Engineering , Control, Robotics, Mechatronics , Aerospace Technology and Astronautics , Communications Engineering, Networks