Traditional radar sensors used for surveillance rely on monostatic radar principles. However, recently the use of remote radio frequency telescopes as bistatic receivers represents an interesting way to reuse existing facilities while providing additional information to improve tracking accuracy. In this paper we study the benefits of using such a system for the task of manoeuvre detection in satellites in LEO and MEO. We investigate the conditions in which a multistatic radar is advantageous for this purpose, and show concrete results based on simulated data. Moreover, we propose novel manoeuvre detection methods, and compare their accuracy to methods found in the literature. A more general way of assessing the accuracy of these manoeuvre detection methods is also proposed, with the aim of taking into account that the parameters of the manoeuvre that actually takes place also have an effect on the accuracy. These can be split into optimal control based methods, and statistical methods. We found the addition of multistatic radar to allow considerable improvement in the accuracy of the manoeuvre detection process, an improvement that is shown to be greater the greater the baseline, i.e., the distance of the receiver to the transmitter. Furthermore, the manoeuvre detection methods that accurately model the uncertainty in the measurements were found to be the most accurate.


    Access

    Download


    Export, share and cite



    Title :

    Satellite Manoeuvre Detection with Multistatic Radar


    Additional title:

    J Astronaut Sci




    Publication date :

    2023-09-14




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Multistatic-Radar Binomial Detection

    Mrstik, A.V. | IEEE | 1978



    Multistatic and MIMO radar

    British Library Conference Proceedings | 2010


    Waveform Design for Multistatic Radar Detection

    Kay, S. | Online Contents | 2009


    Manoeuvre detection in Low Earth Orbit with radar data

    Montilla, Jose M. / Sanchez, Julio C. / Vazquez, Rafael et al. | Elsevier | 2022