AbstractIn this paper, we present a data-driven modeling method for lateral motion control of unknown vehicle models. Vehicle’s motion can be modeled linearly but this model has complex and nonlinear characteristic. Therefore, it is necessary to know the exact information of the car chassis and requires a knowledge and understanding of dynamics. To solve these drawbacks, we linearly represent full vehicle's lateral dynamics which include nonlinear behavior using dynamic mode decomposition (DMD), one of the data driven modeling methods. To determine the validity of the model obtained using the DMD method, we conducted a simulation of the comparison of the output states between the existing model and the model obtained through DMD modeling, using the scenario of a dynamic maneuver called a double line change during lateral motion of a vehicle. After determination of validation is completed, we designed a lane keeping system by applying a model predictive control to specifically evaluate the model of the proposed method. Performance was derived by comparing the error caused by the vehicle driving on the course with the controller of the simulation. The performance of the proposed approach has been evaluated through simulations and is useful when the model is inaccurate.
Vehicle’s Lateral Motion Control Using Dynamic Mode Decomposition Model Predictive Control for Unknown Model
Int.J Automot. Technol.
International Journal of Automotive Technology ; 25 , 5 ; 999-1009
2024-10-01
Article (Journal)
Electronic Resource
English
Springer Verlag | 2024
|A path-following driver model with longitudinal and lateral control of vehicle's motion
Tema Archive | 2009
|Intelligent Vehicle's Driver Model Considering Longitudinal and Lateral Integrated Control
British Library Conference Proceedings | 2018
|