Many important applications of autonomous underwater vehicles (AUVs) require operations in close proximity to man-made objects or natural bottom topography. In these situations, the vehicle must adapt its trajectory on-line in response to current threats and mission objectives. To provide this capability, we are developing a sonar-based navigation technique that emulates the manner in which a person navigates through an unknown room in the dark: by reaching out for and establishing contact with walls, tables, and chairs, managing transitions from one object to the next as one moves across the room. Our intuition here is that, in many ways, sonar is more like touch than vision. It may be possible to build a vehicle that can effectively use its sonar to `grab' an object of interest, say a cylindrical post for docking, and then `reel itself in' by feeding back sonar range measurements from the object to its dynamic controller. We envision an AUV that can establish `virtual tethers' with arbitrary objects in the water column or on the seabed. Fast, local processing can maintain `contact' with the objects or surfaces of interest. Control laws can be established to utilize streams of measurements from these features to achieve local, feature-relative navigation. While our research is driven by the severe challenges of the subsea environment, we anticipate that the approach will also be useful in land robot applications.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Directed-sensing strategies for feature-relative navigation


    Contributors:

    Conference:

    Sensor Fusion VI ; 1993 ; Boston,MA,United States


    Published in:

    Publication date :

    1993-08-20





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Directed-sensing strategies for feature-relative navigation [2059-12]

    Leonard, J. J. / Bellingham, J. G. / SPIE | British Library Conference Proceedings | 1993


    Anonymous Feature-Based Terrain Relative Navigation

    McCabe, James S. / DeMars, Kyle J. | AIAA | 2020


    Feature relative navigation for automous underwater vehicles

    Bennett, Andrew A. (Andrew Arnold), 1963- | DSpace@MIT | 1997

    Free access

    Relative Navigation Strategies for the Magnetospheric Multiscale Mission

    Gramling, C. / Carpenter, R. / Lee, T. et al. | British Library Conference Proceedings | 2004


    Relative Navigation Strategies for the Magnetopheric Multiscale Mission

    Gramling, Cheryl / Carpenter, Russell / Lee, Taesul et al. | NTRS | 2004