In support of the Army vision for increased mobility, survivability, and lethality, we are investigating the use of ultra-wideband (UWB) synthetic aperture radar (SAR) technology to enhance unmanned ground vehicle missions. The ability of UWB radar technology to detect objects concealed by foilage could provide an important obstacle avoidance capability for robotic vehicles. This would improve the speed and maneuverability of these vehicles and consequently increase the probability of survivability of U.S. forces. This technology would address the particular challenges that confront robotic vehicles such as large rocks hidden in tall grass and voids such as ditches and bodies of water. ARL has designed and constructed an instrumentation-grade low frequency, UWB synthetic aperture radar for evaluation of the target signatures and underlying phenomenology of stationary tactical targets concealed by foilage and objects buried in the ground. The radar (named BoomSAR) is installed in teh basekt of a 30-ton boom lift and can be operated while the entire boom lift is driven forward slowly, with the boom arm extended as high as 45 m to generate a synthetic aperture. In this paper, we investigate the potential use of the UWB radar in the forward imaging configuration. The paper describes the forward imaging radar and test setup at Aberdeen Proving Ground, Maryland. We present imagery of "positive" obstacles such as trees, fences, wires, mines, etc., as well as "negative" obstacles such as ditches. Imagery of small targets such as plastic mines is also included. We provide eletromagnetic simulations of forward SAR imagery of plastic mines and compare that to the measurement data.
Forward imaging for obstacle avoidance using ultrawideband synthetic aperture radar
Unmanned Ground Vehicle Technology V ; 2003 ; Orlando,Florida,United States
Proc. SPIE ; 5083
2003-09-30
Conference paper
Electronic Resource
English
Ultrawideband Synthetic Aperture Radar Unexploded Ordnance Detection
Online Contents | 2010
|Forward imaging robotic vehicle mission using an ultra-wideband synthetic aperture radar
Tema Archive | 2002
|