This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.
Space-based IR tracking bias removal using background star observations
Sensors and Systems for Space Applications III ; 2009 ; Orlando,Florida,United States
Proc. SPIE ; 7330
2009-04-29
Conference paper
Electronic Resource
English
Space-based IR tracking bias removal using background star observations [7330-13]
British Library Conference Proceedings | 2009
|Star Background Cancellation for Deep Space Surveillance
IEEE | 1981
|