Autonomous satellite on-orbit servicing is a very challenging task when the satellite to be serviced is tumbling and has an unknown dynamics model. This paper addresses an adaptive control approach which can be used to assist the control of a servicing satellite to rendezvous and dock with a tumbling satellite whose dynamics model is unknown. A proximity-rendezvous and docking operation can be assumed to have three steps: 1) pre-dock alignment, 2) soft docking and latching/locking-up, and 3) post-docking stabilization. The paper deals with the first and third steps. Lyapunovbased tracking law and adaptation law are proposed to guarantee the success of the nonlinear control procedures with dynamics uncertainties. A dynamics simulation example is presented to illustrate the application of the proposed control approach. Simulation results demonstrated that the adaptive control method can successfully track any required angular velocity trajectory even when the dynamics model of the target satellite is unknown.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Angular-velocity tracking with unknown dynamics for satellite rendezvous and docking


    Contributors:
    Diao, Xiumin (author) / Liang, Jianxun (author) / Ma, Ou (author)

    Conference:

    Sensors and Systems for Space Applications III ; 2009 ; Orlando,Florida,United States


    Published in:

    Publication date :

    2009-04-29





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Angular-velocity tracking with unknown dynamics for satellite rendezvous and docking [7330-03]

    Diao, X. / Liang, J. / Ma, O. et al. | British Library Conference Proceedings | 2009




    Rendezvous and docking

    Woods, W. David | Springer Verlag | 2008