In heavy commercial road vehicles, the air brake system is a critical vehicle safety system whose performance degradation increases the risk of accidents and hence requires periodic inspection and maintenance. The wear of brake pad lining and brake drum during operation leads to increase in the stroke of a component called pushrod whose ‘out-of-adjustment’ creates severe brake performance degradation. The fact that the driver does not receive a corresponding tactile feedback till it is too severe adds to the complexity of manual detection. Motivated by the increase in onboard sensing, electronics, and computation capabilities, this study proposes an artificial neural network–based approach to predict pushrod stroke based on measurement of brake chamber pressure. Here, a back propagation algorithm was used to train the multilayer feed-forward network. The effect of excessive pushrod stroke on vehicle braking response was first studied using a Hardware-in-Loop system that consists of brake system hardware and a commercial vehicle dynamics simulation software (IPG TruckMaker®). Experimental data collected from this system with manual slack adjuster and automatic slack adjuster have then been used to train and test the artificial neural network for pushrod stroke prediction. The performance of the prediction scheme has been tested over the entire range of brake operating conditions. The prediction error corresponding to manual slack adjuster was found to be within ±15% in 322 out of the entire test set of 328 instances (98.17%) and automatic slack adjuster within ±8% in all 57 test sets (100%). Statistical analysis based on confidence interval revealed a prediction error between −1.62% and −3.05% for manual slack adjuster and 0.43% and −1.62% for automatic slack adjuster for 99% confidence interval, which demonstrated the efficacy of the proposed prediction scheme.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Artificial neural network approach for air brake pushrod stroke prediction in heavy commercial road vehicles




    Publication date :

    2019-09-01


    Size :

    12 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Automatic Vehicle Air Brake Pushrod Stroke Measuring System

    HEARING BRIAN | European Patent Office | 2022

    Free access

    VEHICLE BRAKE PEDAL BOOSTER PUSHROD INTERFACE ASSEMBLY

    KAPOCS MARCEL / LARSEN MICKAEL | European Patent Office | 2024

    Free access

    Brake Booster Assembly and Pushrod-Pedal Coupler

    NELSON KENNETH | European Patent Office | 2023

    Free access

    Spring brake pushrod to park diaphragm interface

    ROBERTS WILL E | European Patent Office | 2023

    Free access

    Spring Brake Pushrod to Park Diaphragm Interface

    ROBERTS WILL E | European Patent Office | 2022

    Free access