The nonaxisymmetric endwall has been verified to be an effective method in reducing the endwall secondary flow loss. Some assembly features, such as the midgap in the hub of real aircraft engines, may have an influence on the endwall secondary flow. In the present work, a nonaxisymmetric endwall with midgap structure is designed for a large linear turbine cascade. A nonaxisymmetric endwall optimization design procedure is developed to minimize the total pressure loss coefficient at the passage exit. The profile of the endwall is designed using automatic numerical optimization with the Kriging surrogate method. The numerical simulation based on a transition shear stress transport model is used as the aerodynamic evaluation tool for the optimization system. When the midgap is considered in the design, mixing loss between midgap flows and main flow is significantly reduced. However, the loss relative to the passage vortex is increased to some extent.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    The nonaxismmetric endwall aerodynamic optimization design for a large turbine cascade with a midgap


    Contributors:
    He, Lei (author) / Liu, Hao (author) / Zhu, Xiaocheng (author) / Hua, Ouyang (author) / Du, Zhaohui (author)


    Publication date :

    2019-03-01


    Size :

    11 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Aerodynamic Investigation of Endwall Film-Cooling in an Axial Turbine Cascade Part II: Numerical Investigation

    Songling, L. / Gaowen, L. / Duchun, X. et al. | British Library Conference Proceedings | 1999



    Aerodynamic Investigation of Endwall Film-Cooling in an Axial Turbine Cascade Part I: Experimental Investigation

    Lapworth, B. L. / Forest, A. E. / Songling, L. et al. | British Library Conference Proceedings | 1999