The fluidic thrust-vectoring modulation on a Bypass Dual-Throat Nozzle (BDTN) is studied numerically. The thrust vectoring modulation is obtained by varying the secondary mass flow, introducing different area contraction ratios of the bypass duct. The scope of present study is twofold: (i) to set up a model for the control of the secondary mass flow that is consistent with the resolution of the nozzle main flow and (ii) to derive a simplified representation of a valve system embedded in the bypass channel. The simulations of the turbulent airflow inside the BDTN and its efflux in the external ambient have been simulated by using RANS approach with RNG k - ε turbulence modeling. The numerical results have been validated with experimental and numerical data available in the open literature. The nozzle performance and thrust vector angle are computed for different values of the bypass area contraction ratio. The effects of different secondary mass flow rates on the system resultant thrust ratio and discharge coefficient of the bypass dual-throat nozzle have been investigated. By using the proposed approach to the secondary mass flow modulation, the thrust pitch angle has been controlled up to 27°.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Numerical study of secondary mass flow modulation in a Bypass Dual-Throat Nozzle


    Contributors:


    Publication date :

    2021-03-01


    Size :

    13 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English






    Experimental evaluation and numerical simulation of performance of the bypass dual throat nozzle

    Hamedi-Estakhrsar, Mohammad Hadi / Mahdavy-Moghaddam, Hossein | SAGE Publications | 2021


    Numerical simulation and experiment of a bypass dual throat nozzle with tab modification

    Pan, Ruifeng / Xu, Jinglei / Zhang, Yuqi et al. | Elsevier | 2023


    Experimental and numerical investigation of an axisymmetric divergent dual throat nozzle

    Wang, Yang-Sheng / Xu, Jing-Lei / Huang, Shuai et al. | SAGE Publications | 2020