Assuming the wave steepness of the incident waves and the ship motions are small, the second-order weakly-nonlinear hydrodynamic problem of a ship moving with constant forward speed is studied numerically in a consistent way. The boundary value problem is formulated in a body-fixed coordinate system and the perturbation scheme is used. This formulation does not include any derivatives of the velocity potential on the right-hand side of the body-boundary conditions, and thus avoid the difficulties associated with the terms similar to the so-called mj-terms and their derivatives. The second-order sum-frequency wave excitation of ship springing is studied in both monochromatic and bichromatic head-sea waves. Different Froude numbers are considered. A time-domain Higher-Order Boundary Element Method based on cubic shape function is used as a numerical tool. An upstream finite difference scheme is used for longitudinal derivative terms in the free-surface conditions. For a modified Wigley hull in head-sea waves, it is found that the second-order velocity potential gives dominant contribution to second-order wave excitation of ship springing in the wave frequency region where sum-frequency springing occurs. Quadratic velocity terms in the Bernoulli equation have a relatively small contribution. The numerical results also demonstrate strong dependency of the second-order wave excitation of ship springing on the Froude numbers for small wave lengths. The effect of beam and draft is investigated.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A numerical study of the second-order wave excitation of ship springing in infinite water depth


    Contributors:


    Publication date :

    2012-05-01


    Size :

    17 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown