The progressive degradation of railway ballast is often cited as a primary factor that contributes to the development of track roughness, while ballast renewal (undercutting) attempts to manage its long-term development. Soft subgrades have been shown to strongly influence track geometry and are a contributing factor that has not been considered during conventional track maintenance. This study evaluated the impact of undercutting on long-term trends in track geometry roughness, and what impact softer subgrades had on the effectiveness of undercutting. A combined 6.90 km of Class II–IV heavy-haul track in Western Canada (undercut in 2010 and 2011) formed the basis for this analysis. Annual traffic on these sections typically totals 50 million gross tonnes. Long-term trends in the track crosslevel, alignment, and surface roughness after ballast renewal were derived from 50 track geometry surveys carried out over a five-year period (2010–2015). The results showed that undercutting significantly reduced track roughness over sand, silt, clay, or till subgrades; however, it was often ineffective when used over soft organic subgrades. Thus, while ballast degradation is the primary cause of track roughness in segments constructed on mineral subgrades, it is not a mechanism that results in track geometry roughness over soft organic soils.
Evaluating the impact of ballast undercutting on the roughness of track geometry over different subgrade conditions
2018-05-01
11 pages
Article (Journal)
Electronic Resource
English
Higher production in ballast cleaning and undercutting
Online Contents | 1996
Examining ballast and subgrade conditions
Online Contents | 1994
Higher production in ballast cleaning and undercutting
British Library Online Contents | 1996
British Library Conference Proceedings | 1998
|