Obstacle avoidance strategy is important to ensure the driving safety of unmanned ground vehicles. In the presence of static and moving obstacles, it is challenging for the unmanned ground vehicles to plan and track the collision-free paths. This paper proposes an obstacle avoidance strategy consists of the path planning and the robust fuzzy output-feedback control. A path planner is formed to generate the collision-free paths that avoid static and moving obstacles. The quintic polynomial curves are employed for path generation considering computational efficiency and ride comfort. Then, a robust fuzzy output-feedback controller is designed to track the planned paths. The Takagi–Sugeno (T–S) fuzzy modeling technique is utilized to handle the system variables when forming the vehicle dynamic model. The robust output-feedback control approach is used to track the planned paths without using the lateral velocity signal. The proposed obstacle avoidance strategy is validated in CarSim® simulations. The simulation results show the unmanned ground vehicle can avoid the static and moving obstacles by applying the designed path planning and robust fuzzy output-feedback control approaches.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Path planning and robust fuzzy output-feedback control for unmanned ground vehicles with obstacle avoidance


    Contributors:
    Chen, Yimin (author) / Hu, Chuan (author) / Qin, Yechen (author) / Li, Mingjun (author) / Song, Xiaolin (author)


    Publication date :

    2021-03-01


    Size :

    12 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    OBSTACLE AVOIDANCE, PATH PLANNING AND CONTROL FOR AUTONOMOUS VEHICLES

    Laghmara, Hind / Boudali, Mohamed-Taha / Laurain, Thomas et al. | British Library Conference Proceedings | 2019


    Obstacle Avoidance, Path Planning and Control for Autonomous Vehicles

    Laghmara, Hind / Boudali, Mohamed-Taha / Laurain, Thomas et al. | IEEE | 2019


    Obstacle Avoidance for Unmanned Ground Vehicles in Unstructured Environments

    Pollini, Lorenzo / Cellini, Manuele / Mati, Roberto et al. | AIAA | 2007


    Smooth Obstacle Avoidance Path Planning for Autonomous Vehicles

    Ben-Messaoud, Wael / Basset, Michel / Lauffenburger, Jean-Philippe et al. | IEEE | 2018