Effectiveness of active flow control for twin-tail buffet alleviation is investigated. Tangential leading-edge blowing (TLEB) and flow suction along the vortex cores (FSVC) of the leading edges of the delta wing are used to delay the vortex breakdown flow upstream of the twin tail. The combined effect of the TLEB and FSVC is also investigated. A parametric study of the effects of the spanwise position of the suction tubes and volumetric suction. flow rate on the twin-tail buffet response are also investigated. The TLEB moves the path of leading-edge vortices laterally towards the twin tail, which increases the aerodynamic damping on the tails. The FSVC effectively delays the breakdown location at high angles of attack. The computational model consists of a sharp-edged delta, wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, on a dynamic multi-block grid structure. The computational model is pitched at 30° angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Effectiveness of Flow Control for Alleviation of Twin-Tail Buffet


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    World Aviation Congress & Exposition ; 1998



    Publication date :

    1998-09-28




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Effectiveness of flow control for alleviation of twin-tail buffet

    Sheta, Essam / Kandil, Osama / Yang, Zhi | AIAA | 1998


    VORTEX CONTROL FOR TAIL BUFFET ALLEVIATION ON A TWIN-TAIL FIGHTER CONFIGURATION

    Puram, C. K. / Rao, Dhanvada M. / Shah, Gautam H. | SAE Technical Papers | 1989


    Effectiveness of adaptive flow control for twin-tail buffet

    Kandil, Osama / Yang, Zhi / You, Ruobo | AIAA | 2000


    Tail buffet alleviation of high-performance twin-tail aircraft using piezostack actuators

    Hanagud, S. / Bayon de Noyer, M. / Luo, H. et al. | Tema Archive | 2002


    Tail Buffet Alleviation of High-Performance Twin-Tail Aircraft Using Piezostack Actuators

    S. Hanagud / M. Bayon de Noyer / H. Luo et al. | AIAA | 2002