High-speed vehicles in low illumination environments severely blur the images used in object detectors, which poses a potential threat to object detector-based advanced driver assistance systems (ADAS) and autonomous driving systems. Augmenting the training images for object detectors is an efficient way to mitigate the threat from motion blur. However, little attention has been paid to the motion of the vehicle and the position of objects in the traffic scene, which limits the consistence between the resulting augmented images and traffic scenes. In this paper, we present a vehicle kinematics-based image augmentation algorithm by modeling and analyzing the traffic scenes to generate more realistic augmented images and achieve higher robustness improvement on object detectors against motion blur. Firstly, we propose a traffic scene model considering vehicle motion and the relationship between the vehicle and the object in the traffic scene. Simulations based on typical ADAS test scenes show that the high vehicle speed and near object position is the key factor in generating motion blur. Second, we propose the vehicle-motion-based image augmentation algorithm. The proposed method applies the motion blur on the clear object based on the vehicle's speed and the relative position of the object. Subjective evaluation and multiple objective evaluation indexes including structural similarity index measure (SSIM), perceptual hash, normalized mutual information, and cosine similarity demonstrates that the proposed image augmentation can produce images more consistent with the traffic scenes. Thirdly, we apply the proposed method to the training of object detectors. Experiments on the KITTI dataset as well as real-world driving tests show that the proposed image augmentation achieves a higher robustness improvement than existing image augmentation algorithms on multiple object detectors including CenterNet, YOLOv3, and Faster R-CNN.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Vehicle Kinematics-Based Image Augmentation against Motion Blur for Object Detectors


    Additional title:

    Sae Technical Papers


    Contributors:
    Meng, Dejian (author) / Zhang, Lijun (author) / Huang, Luying (author) / Tian, Wei (author) / Xiao, Wei (author) / Zhang, Zhuang (author)

    Conference:

    WCX SAE World Congress Experience ; 2023



    Publication date :

    2023-04-11




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Vehicle Kinematics-Based Image Augmentation against Motion Blur for Object Detectors

    Zhang, Zhuang / Zhang, Lijun / Meng, Dejian et al. | British Library Conference Proceedings | 2023


    Motion blur of star image and restoration

    Xiaojuan, W. / Xinlong, W. | British Library Online Contents | 2011


    CORRECTING MULTI-ZONE MOTION BLUR

    MUHASSIN NIJUMUDHEEN / LOW YEW KWANG / DWIVEDI JAYESH et al. | European Patent Office | 2023

    Free access

    LCD motion blur modeling and analysis

    Hao Pan, / Xiao-Fan Feng, / Daly, S. | IEEE | 2005


    LCD Motion Blur Modeling and Analysis

    Pan, H. / Feng, X.-F. / Daly, S. | British Library Conference Proceedings | 2005