The dynamic friction behavior of automotive brakes is generated by the boundary layer dynamics between pad and disk [OST01]. A key component of the Friction Interface is the influence of mesoscopic surface contact structures known as patches, upon which the friction power is concentrated, and whose sizes vary with time. Through this dynamic process, time and load history-dependent effects come about, which cause, for example, the brake moment behavior commonly observed in an AK-Master test.In recent years, several simulation tools have been developed in order to predict the complex friction behavior caused by the patch dynamics in the friction boundary layer. Such simulations are often based on a two or three-dimensional spatial grid, where the explicit physical phenomena at all locations in the boundary layer are modeled by time-consuming calculations of local material dependent balance equations.A new abstract Cellular Automata simulation tool is introduced, which reduces the necessary computation to the patches in the friction boundary layer. Rather than making use of a spatial grid, each patch is considered a single cell, whose size can be adjusted without added computation costs. Using this method, the friction and wear behavior of an entire brake pad can be computed more quickly than, and at least as accurately as previous simulation tools could simulate a small subsection of the pad.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Effective Simulation of the Boundary Layer of an Entire Brake Pad


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    SAE Brake Colloquium & Exhibition - 33rd Annual ; 2015



    Publication date :

    2015-09-27




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Effective Simulation of the Boundary Layer of an Entire Brake Pad

    Ostermeyer, Georg / Merlis, Joshua | British Library Conference Proceedings | 2015


    Boundary-Layer Control for Effective Hypersonic Intake

    Ruban, Alex / Menezes, Viren / Balasubramanian, Sridhar | AIAA | 2018




    Determining effective brake pedal position

    O'LEARY PATRICK J / KELLER BRET J / SHULER BARBARA A et al. | European Patent Office | 2016

    Free access