The design and performance of the Space Station Freedom Photovoltaic (PV) Power Module Thermal Control System radiators is presented. The PV Radiator is of a single phase pumped loop design using liquid ammonia as the coolant. Key design features are described, including the base structure, deployment mechanism, radiator panels, and two independent coolant loops. The basis for a specific mass of 7.8 kg/m2 is discussed, and methods of lowering this number for future systems are briefly described.Key performance parameters are also addressed. A summary of test results and analysis is presented to illustrate the survivability of the radiator in the micrometeoroid and orbital debris environment. A design criterion of 95% probability of no penetration of both fluid loops over a 10 year period is shown to be met. Methods of increasing the radiator survivability even further are presented. Thermal performance is also discussed, including a comparison of modeling predictions with existing test results. Degradation in thermal performance due to exposure to atomic oxygen and ultraviolet radiation in the low Earth orbit environment is presented. The structural criteria to which the radiator is designed are also briefly addressed. Finally, potential design improvements are discussed.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Design and Performance of Space Station Photovoltaic Radiators


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    International Conference On Environmental Systems ; 1993



    Publication date :

    1993-07-01




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Design and performance oof space station photovoltaic radiators

    White, K. Alan / Fleming, Mike L. / Lee, Avis Y. | NTRS | 1993


    Thermal Design of the International Space Station Photovoltaic Radiators

    Blaser, Allen N. / Steinfeld, David E. / Flores, Robert R. | SAE Technical Papers | 1998


    International Space Station Design-to-Freeze Radiators

    Duschatko, R. John / Broeren, Robert L. | SAE Technical Papers | 1997


    Passive Freeze Protection for the International Space Station Photovoltaic Radiators

    Blaser, Allen N. / Steinfeld, David E. | SAE Technical Papers | 1998