In this paper, a novel methodology of nonlinear control is used, and a passivity-based control of contractive port-controlled Hamiltonian (PCH) systems is applied to a permanent magnet synchronous motor (PMSM). This methodology, also called “tIDA-PBC” (Trajectory Injection and Damping Assignment—Passivity-Based Control), uses passivity-based control of PCH systems “IDA-PBC” and exploits the properties of contractive Hamiltonian systems, resulting in a closed loop with its contractive system desired dynamics, thus obtaining an exponential trajectory tracking without relying on the error coordinates. In this system, a few steps are proposed in order to divide and modularize the methodology so it can be redesigned or reapplied in other systems by the reader. First, we define the model and set the way to solve the “matching equation.” Then the feasible and reference trajectories are obtained. After that, the desired Dirac structure and energy function are set in order to meet the methodology requirements. Finally, the control law is obtained, and simulations were performed. The desired trajectories (which can be time varying) are arbitrarily set, and the exponential convergence to the desired trajectories is archived. The results obtained from the simulations are an initial approach to the improvement of propulsion algorithms in electrified vehicles, where linear controls are still used and have poor performance compared to the visited methodology.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Exponential Trajectory Tracking Passivity-Based Control for Permanent-Magnet Synchronous Motors


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    Automotive Technical Papers ; 2022



    Publication date :

    2021-04-09




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Exponential Trajectory Tracking Passivity-Based Control for Permanent-Magnet Synchronous Motors

    Rodríguez, Luis Fernando | British Library Conference Proceedings | 2021



    Tracking of Partially Unknown Trajectories for Permanent Magnet Synchronous Motors

    Gentili, L. / Paoli, A. / Bonivento, C. | British Library Online Contents | 2009



    Drive systems with permanent magnet synchronous motors

    Ericsson,S. / ABB Automation and Drives,SE | Automotive engineering | 1995