Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range. The response of small-scale features and coupling coefficients between sub-components are obtained through local FEM models integrated in the global DFM treatment. The computational cost of DFM is largely frequency independent making it possible to get results from the mid-to-high frequency regime. This tool will be important when considering the vibrational response of a structure as a whole moving away from modelling vibrations only in sub-parts of the mechanical body.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Discrete Flow Mapping - A Mesh Based Simulation Tool for Mid-to-High Frequency Vibro-Acoustic Excitation of Complex Automotive Structures


    Additional title:

    Sae International Journal of Passenger Cars. Mechanical Systems
    Sae Int. J. Passeng. Cars - Mech. Syst


    Contributors:

    Conference:

    8th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference ; 2014



    Publication date :

    2014-06-30


    Size :

    7 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Discrete flow mapping - a mesh based simulation tool for high frequency vibro acoustics of complex engineering

    Tanner,G. / Chappell,D.J. / Loechel,D. et al. | Automotive engineering | 2013


    Vibro-Acoustic Simulation of Automotive Piping and Exhaust Systems

    Gaul, Lothar / Herrmann, Jan / Junge, Michael | TIBKAT | 2017


    Active vibro-acoustic of automotive vehicles

    Alves, G.S. / Shoureshi, R. / Knurek, T. et al. | Tema Archive | 1994


    Active Vibro-Acoustic Control in Automotive Vehicles

    Eberhard, Günter / Karkosch, Hans-Jürgen / Vance, James L. et al. | SAE Technical Papers | 1997


    Active vibro-acoustic control in automotive vehicles

    Shoureshi,R.A. / Vance,J.L. / Ogundipe,L. et al. | Automotive engineering | 1997