To meet future emission levels, the automotive industry is trying to reduce tailpipe emissions through both possible pathways, i.e. emission from engines as well as and the development of novel catalytic emission control concepts. The present study will focus on the close coupled SCR on Filter commonly known as SDPF which is a main pathway to reduce NOx along with particulate mass and number for light duty passenger cars and sport utility vehicles for BS 6 RDE/OBD 2 and future legislation like BS-7. The SDPF is a challenging technology as it is critical component in exhaust after treatment system involving in NOx and PM/PN reductions hence careful optimization of this technology is necessary in terms of space velocity requirements, temperature, feed NOx emission levels, particulate mass and ash holding capacities, NH3 storage on the SDPF, and back pressure.With BS6 RDE having extremely challenging conformity factor (CF) for NOx equals to 1.43, the SDPF design & optimization is high on importance. Tools such as simulation, synthetic gas bench and engine bench testing and vehicle testing, in conjunction with each other can play critical role in optimal design of the SDPF by enabling the assessment of catalyst performance with different input conditions before the actual hardware testing.Umicore always strive to design the catalyst not only for legislative cycles but ensure that these systems work well till the end of the useful life. This paper presents a joint study between Umicore and OEM (Original Equipment Manufacturer) for analyzing the performance of a 1.5L engine volume SDPF catalyst for a vehicle application. Initially catalyst parameter evaluation was done on synthetic gas bench (SGB). Further, a systematic approach is followed to understand the effect of feed NO2/NOx ratio, catalyst volume, inlet temperature and the feed NH3/NOx ratio on the NOx conversion efficiency of the catalyst by using a model-based study. The benefit of using an optimal urea dosing strategy over a simplistic dosing strategy for maximum NOx conversion is also demonstrated.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Performance Evaluation Study to Optimize the NOx Conversion Efficiency of SDPF Catalyst for BS6 RDE/OBD2 Engine Application


    Additional title:

    Sae Technical Papers



    Conference:

    Symposium on International Automotive Technology ; 2024



    Publication date :

    2024-01-16




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    93EN50 OBD2 Compliance Validation

    Peters, M. / ISATA / ENEA; Agency: Italy | British Library Conference Proceedings | 1993


    Beyond the OBD2 scan tool

    Peters,M. / GenRad,GB | Automotive engineering | 1993


    93EN049 Beyond the OBD2 Scan Tool

    Peters, M. / ISATA / ENEA; Agency: Italy | British Library Conference Proceedings | 1993


    Real Driving Emission Efficiency Potential of SDPF Systems without an Ammonia Slip Catalyst

    Georgiadis, Evangelos / Hagen, Juergen / Uchiyama, Ken et al. | SAE Technical Papers | 2017


    Optimized Soot Monitoring by Ammonia Injection in a sDPF System for BS6.2 Application

    Rathiya, Akash / P, Jagdesan / Palanisamy, Krishnaraj et al. | SAE Technical Papers | 2024