The impact of 50 ppm intake seeding of ozone (O3) on performance and emissions characteristics was explored in a single-cylinder research engine operated under lean spark assisted compression ignition (SACI) conditions. Optical access into the engine enabled complementary crank angle resolved measurements of in-cylinder O3 concentration via ultraviolet (UV) light absorption. Experiments were performed at moderate loads (4 - 5 bar indicated mean effective pressure) and low-to-moderate engine speeds (800 - 1400 revolutions per minute). Each operating condition featured a single early main injection and maximum brake torque spark timing. Intake pressure was fixed at 1.0 bar, while intake temperatures were varied between 42 - 80 °C. Moderate amounts of internal residuals (12 - 20%) were retained through the use of positive valve overlap.Ozone addition was to found stabilize combustion relative to similar conditions without O3 addition by promoting end gas auto-ignition. Ozone addition was most beneficial for the lowest engine speeds due to the longer available time per cycle for chemically controlled cool flame behavior to occur. Moreover, the homogeneous mixtures and low flame temperatures led to specific NOx emissions of less than 1 g/kg-fuel. From complementary measurements of in-cylinder O3 decomposition acquired via UV light absorption, rapid decomposition of O3 into molecular and atomic oxygen coincided with the onset of low-temperature heat release (LTHR). For a given intake temperature and engine speed, the appearance of LTHR was relatively invariant to spark timing and instead was more sensitive to the time at which O3 decomposition occurred. End gas temperatures at the onset of high-temperature heat release were between 840 and 900 K, which are roughly 200 K cooler than those found in previous studies where intake heating or extensive retained residuals were used to pre-heat the charge. These results demonstrate that O3 addition increased the charge reactivity of gasoline, and thereby enabled SACI operation for a broader range of conditions.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Detailed Investigation into the Effect of Ozone Addition on Spark Assisted Compression Ignition Engine Performance and Emissions Characteristics


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    WCX SAE World Congress Experience ; 2019



    Publication date :

    2019-04-02




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English






    Spark Assisted Compression Ignition Engine with Stratified Charge Combustion and Ozone Addition

    Biswas, Sayan / Ekoto, Isaac | British Library Conference Proceedings | 2019



    Machine Learning Model for Spark-Assisted Gasoline Compression Ignition Engine

    Airamadan, Abdullah S. / Al Ibrahim, Zahra / Mohan, Balaji et al. | British Library Conference Proceedings | 2022