This paper presents a methodology to design the powertrain of an electrical vehicle (EV) in an optimal way. The electric vehicle optimal design is carried out using multiobjective genetic optimization algorithm. The developed methodology is based on the coupling of a genetic algorithm with powertrain component models. It allows determining the drive train components specifications for imposed vehicle performances, taking into account the dynamic model of the vehicle and all the components interactions. In this way, the components can be sized taking into account the whole system behavior in an optimal global design. The developed methodology is performed on the European driving cycle (NEDC) to estimate energy consumption gains but also powertrain mass reduction in comparison with a classical step-by-step methodology. This optimal procedure is notably important to increase electric vehicle range or reduce battery size and thus electric vehicle cost.
Efficient Design Methodology of an All-Electric Vehicle Powertrain using Multi-Objective Genetic Optimization Algorithm
Sae Technical Papers
SAE 2013 World Congress & Exhibition ; 2013
2013-04-08
Conference paper
English
British Library Conference Proceedings | 2013
|Multi-Objective Optimization of Automobile Powertrain Based on Genetic Algorithm
Trans Tech Publications | 2013
|Multi-objective optimisation for battery electric vehicle powertrain topologies
SAGE Publications | 2017
|Multi-objective optimisation for battery electric vehicle powertrain topologies
Online Contents | 2016
|