Modern Automated Driving (AD) systems rely on safety measures to handle faults and to bring the vehicle to a safe state. To eradicate lethal road accidents, car manufacturers are constantly introducing new perception as well as control systems. Contemporary automotive design and safety engineering best practices are suitable for analyzing system components in isolation, whereas today’s highly complex and interdependent AD systems require a novel approach to ensure resilience to multiple-point failures. We present a holistic and cost-effective safety concept unifying advanced safety measures for handling multiple-point faults. Our proposed approach enables designers to focus on more pressing issues such as handling fault-free hazardous behavior associated with system performance limitations. To verify our approach, we developed an executable model of the safety concept in the formal specification language mCRL2. The model behavior is governed by a four-mode degradation policy-controlling distributed processors, redundant communication networks, and virtual machines (VMs). To keep the vehicle as safe and cost effective as possible, our degradation policy can reduce driving comfort or AD system’s availability using additional low-cost driving channels. We formalized five safety requirements in the modal μ-calculus and proved them against our mCRL2 model, which is intractable to accomplish exhaustively using traditional road tests or simulation techniques. In conclusion, our formally proven safety concept defines a holistic and cost-effective design pattern for AD systems.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Formally Verified Fail-Operational Safety Concept for Automated Driving


    Additional title:

    Sae Intl. J Cav


    Contributors:


    Publication date :

    2022-01-17


    Size :

    15 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Software safety architecture that can be formally verified

    Cossy,M. / STZ Softwaretechnik,DE | Automotive engineering | 2004


    Fail-operational architecture with functional safety monitors for automated driving system

    LIU XIAODONG / QU NING | European Patent Office | 2021

    Free access

    FAIL-OPERATIONAL ARCHITECTURE WITH FUNCTIONAL SAFETY MONITORS FOR AUTOMATED DRIVING SYSTEM

    LIU XIAODONG / QU NING | European Patent Office | 2020

    Free access

    Efficiency analysis of formally verified adaptive cruise controllers

    Loos, Sarah M. / Witmer, David / Steenkiste, Peter et al. | IEEE | 2013


    A Deployment Framework for Formally Verified Human-Robot Interactions

    Lestingi, Livia / Askarpour, Mehrnoosh / Bersani, Marcello M. et al. | BASE | 2021

    Free access