The destruction of organic contaminants in waste water for closed systems, such as that of the International Space Station, is crucial due to the need for recycling the waste water. A cocurrent upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. This paper addresses the development of a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate. To validate this model, a bench scale reactor has been tested at Michigan Technological University at elevated pressures (50-83 psig) and a temperature range of 200 to 290°F. Feeds consisting of five dilute solutions of ethanol (∼10 ppm), chlorobenzene (∼20 ppb), formaldehyde(∼ 100 ppb), dimethyl sulfoxide (DMSO ∼300 ppb), and urea (∼20 ppm) in water were tested individually with an oxygen mass flow rate of 0.009 lb/h. The results from these individual tests were used to develop the kinetic parameter inputs necessary for the computer model. The computer simulated results are compared to the experimental data obtained for all 5 components run in a mixture on the differential test column for a range of reactor contact times.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Catalytic Oxidation Model Development of the Volatile Reactor Assembly Unit of the International Space Station Water Processor


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    International Conference on Environmental Systems ; 1995



    Publication date :

    1995-07-01




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English






    Ion Exchange Model Development for the International Space Station Water Processor

    Clancey, Brooke L. / Carter, D. Layne / Hokanson, David R. et al. | SAE Technical Papers | 1995


    Catalyst Development for the Space Station Water Processor Assembly

    Bedard, John / Carter, Layne / Nalette, Tim | SAE Technical Papers | 2002


    Development Status of the International Space Station Urine Processor Assembly

    Hutchens, Cindy F. / Holder, Donald W. | SAE Technical Papers | 2003