During braking a large amount of kinetic energy will be transformed into thermal energy thereby increasing the brake disc temperature around 200oC to 500oC in motorcycles and ATVs, which forces to improve the heat transfer in brake disc by providing grooves and holes and this minimize the clamping area between the brake pad and disc, thus resulting in uneven contact thereby reducing the clamping force. In which the present study is mainly done to improve the clamping force on the brake disc through re-coined the shape of grooves with various disc materials by design and analysis route. The brake disc is modelled with triangular groove around the radial diameter of the Aluminium metal matrix composite (AA8081 reinforced with 15wt% of SiC and 3wt% of Gr), Stainless Steel (SUS 410) materials data set. The couple field analysis attempts of both thermal and structural analysis was done to find the impact on the brake disc heat transfer rate, deformation, von Mises stress and strength which were analyzed by ANSYS workbench. To assure safe braking condition, towards increase in the area of contact between the brake pad and disc material of AA8081 reinforced with 15wt% of SiC and 3wt% of Gr shows better responses were observed than other grades. Due to the better heat transfer rate for both aspects of proposed grooves with high strength composites. This out reached design and material may suitable for automobiles in next level of alternatives in brake disc.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Design Modification of Brake Disc and Brake Pad to Increase the Heat Transfer Rate and Clamping Area through Thermal and Structural Analysis for Automobiles


    Additional title:

    Sae Technical Papers



    Conference:

    International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility ; 2020



    Publication date :

    2020-09-25




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Brake disc clamping device for railway vehicle

    LEE JAE YOUNG | European Patent Office | 2022

    Free access

    BRAKE DISC CLAMPING DEVICE FOR RAILWAY VEHICLE

    LEE JAE YOUNG | European Patent Office | 2016

    Free access

    Vacuum brake for automobiles

    Engineering Index Backfile | 1916


    Brake disc clamping device for railway vehicle

    European Patent Office | 2016

    Free access

    DISC BRAKE, DISC BRAKE SYSTEM, AND PARKING BRAKE SYSTEM

    ZENZEN GUIDO / MADZGALLA FRANK WILHELM / SCHROETER CHRISTIAN | European Patent Office | 2020

    Free access