Compressible aerodynamic flows inside nozzles are computed by a finite volume method to numerically integrate the Euler and Navier-Stokes equations. The solution procedure is based on an explicit multi-stage time-stepping scheme wherein the spatial terms are central-differenced and a combination of second and fourth differences in the flow variables are used to construct numerical dissipation terms to enhance numerical stability. Convergence to steady state is accelerated dramatically by using local time-stepping, implicit residual smoothing and a multi-grid strategy. Computed results are presented for a wide variety of flow regimes comprising of subsonic, transonic, choked and supersonic flows for a nozzle.
Computational Study of Aerodynamic Flows Inside Nozzles
Sae Technical Papers
International Pacific Air & Space Technolgy Conference ; 1994
1994-03-01
Conference paper
English
Chokes , Aerodynamics , Fabrication , Nozzles
Aerodynamic studies for deployable nozzles
AIAA | 1985
|A Computational Study of Flows through High Speed Inlets and Nozzles
British Library Conference Proceedings | 1993
|Computational and experimental investigations of rarefied flows in small nozzles
Tema Archive | 1996
|Aerodynamic performance of acoustically suppressed exhaust nozzles
Tema Archive | 1984
|