As the most power-consuming component of the fuel cell system, the compressor directly affects the efficiency of the system. Using turbines to recover energy from the exhaust gas, has become a feasible means to improve the fuel cell system’s efficiency. Previous designs are mainly based on high-temperature (>523.15 K) gas. However, the exhaust gas temperature of the proton exchange membrane fuel cell is only about 348.15 K, which is much lower than the working fluid temperature of typical turbines (such as those used in internal combustion engine). In this paper, a turbine rotor for a 100kW fuel cell system was designed. The influences of non-design structural parameters including blade inlet incline angle, blade thickness, blade tip clearance and blade number on the aerodynamic performance and internal flow of the rotor are investigated. Computational fluid dynamic (CFD) model of the rotor single flow is established to predict the turbine aerodynamic performance. Results show that the blade number has a significant impact on the flow performance of the turbine rotor. At the design point, the blade number is changed from 11 to 9, thus the mass flow can be increased by 23.86%. Inlet forward-inclined rotors are more suitable for low-temperature turbines for fuel cell vehicles, which can effectively decrease pressure gradient in the height direction, which is beneficial to reduce the secondary flow loss and the tip leakage loss.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Design and Structural Parameters Analysis of the Turbine Rotor in Fuel Cell Vehicle


    Additional title:

    Sae Technical Papers


    Contributors:
    Mao, Haoyu (author) / Xu, Sichuan (author) / Zhang, Yuemeng (author)

    Conference:

    SAE WCX Digital Summit ; 2021



    Publication date :

    2021-04-06




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Design and Structural Parameters Analysis of the Turbine Rotor in Fuel Cell Vehicle

    Mao, Haoyu / Zhang, Yuemeng / Xu, Sichuan | British Library Conference Proceedings | 2021



    Structural Design and Analysis of Wind Turbine Rotor Blades Using Laminated Sandwich Composites

    Us, S. / Tolun, S. / American Society of Civil Engineers | British Library Conference Proceedings | 2004


    Turbine-Engine Transient-Rotor Analysis

    Galardo, V., Jr. / Stallone, M. / Storace, A. et al. | NTRS | 1985


    Rotor blade structural design

    Nixon, Mark W. | NTRS | 1989