The results of the experimental analyses, described in Part 1, are here employed to build up an innovative numerical approach for the 1D modeling of combustion, cycle-by-cycle variations and knock of a high performance 12-cylinder spark-ignition engine. The whole engine is schematized in detail in a 1D framework simulation, developed in the GT-Power™ environment. Proper “in-house developed” sub-models are used to describe the combustion process, turbulence phenomenon, cycle-by-cycle variations (CCV) and knock occurrence. In particular, the knock onset is evaluated by a chemical kinetic scheme for a toluene reference fuel, able to detect the presence of auto-ignition reactions in the end-gas zone. In a first stage, the engine model is validated in terms of overall performance parameter and ensemble averaged pressure cycles, for various full and part load operating points and spark timings. Then, the correlation regarding the maximum in-cylinder pressure distribution developed in Part 1 is here applied to predict representative faster-then-average and slower-than-average cycles, miming the effects of the experimentally observed CCV. A proper knock index is introduced and evaluated with reference to the above faster-than-average cycle. An automatic procedure is implemented to identify the Knock Limited Spark Advance (KLSA), based on the same threshold level utilized in the experimental knock analysis of Part 1. The numerical and experimental KLSA presents an excellent agreement, denoting the accuracy of the proposed combustion and knock modeling.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 2: 1D Combustion and Knock Modeling


    Additional title:

    Sae Int. J. Engines


    Contributors:

    Conference:

    12th International Conference on Engines & Vehicles ; 2015


    Published in:

    Publication date :

    2015-09-06


    Size :

    10 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English





    Modeling autoignition and engine knock under spark ignition conditions

    Eckert,P. / Kong,S.C. / Reitz,R.D. et al. | Automotive engineering | 2003


    Modeling Autoignition and Engine Knock Under Spark Ignition Conditions

    Eckert, Peter / Reitz, Rolf D. / Kong, Song-Charng | SAE Technical Papers | 2003


    Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 1: Experimental Data and Correlations Assessment

    Siano, Daniela / Cacciatore, Diego / Minarelli, Fabrizio et al. | SAE Technical Papers | 2015


    Knock Effects on Spark-ignition Engine Emission and Performance

    Rhee, K. T. / Kaelblein, Thomas / Jeong, Y. 1. | SAE Technical Papers | 1990