Most of algorithms of lane detection mainly aim at the scenes of daytime. However, those algorithms are unstable for the lane detection at night because the camera is very sensitive to the light change. This paper proposed a lane detection algorithm that largely improves the detection system’s performance when it is used at night. The algorithm has two main stage: Image processing and Kalman filter (KF). The key process steps of Stage 1 are: extracting the Region of Interesting (ROI)→Edge Detection →Binarization→Hough→ Lane Selection→Lane fitting. First step, a ROI could be extracted according to the relatively fixed location of lanes. In step of edge detection, we use a creative filter named Correlation filter to remove image noise and remain the feature of lane. The filter matrix looks like “[0 1 1, −1 0 1; −1 −1 0]”. Next, the candidate lines are detected by the Hough transform, then, the equations of lane are acquired by fitting spots obtained from Hough. In Stage 2, we used the Kalman filter to trace the lane, which improving the efficiency and the accuracy of lane detection. In the KF unit, we use an innovative method—the Deep ROI extraction, to eliminate the mass of disturbances and select which region of current frame needs to be detected. The experiment showed that the method is very effective in clearing distractions. Finally, we test this algorithm on the platform of Matlab. By the way, the test datasets were built by collecting plenty of scenes, including urban roads and highway as well as countryside roads. This algorithm’s image processing rate approximately keeps on 13 frames per second and average accuracy of the detection reaches at 96.2%. For further verifying the algorithm, we will code it in C++ and test in a real vehicle.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Lane Detection System for Night Scenes


    Additional title:

    Sae Technical Papers


    Contributors:
    Liu, Junsheng (author) / Gao, Song (author) / Chi, Wenchao (author) / Hu, Yuanzhi (author) / Shen, Zhiang (author)

    Conference:

    Intelligent and Connected Vehicles Symposium ; 2018



    Publication date :

    2018-08-07




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Lane Detection System for Night Scenes

    Hu, Yuanzhi / Liu, Junsheng / Gao, Song et al. | British Library Conference Proceedings | 2018


    Lane Detection System for Vehicles During Night time

    K, Vijayakumar / A, Jim Gilmour / N, Lohit Vignesh et al. | IEEE | 2024


    Pedestrian lane detection in unstructured scenes for assistive navigation

    Phung, Son Lam / Le, Manh Cuong / Bouzerdoum, Abdesselam | British Library Online Contents | 2016


    Vision-Based Lane Detection Algorithm in Urban Traffic Scenes

    Ran, Feng / Jiang, Zhoulong / Xu, Meihua | Springer Verlag | 2014


    Vision-Based Lane Detection Algorithm in Urban Traffic Scenes

    Ran, Feng / Jiang, Zhoulong / Xu, Meihua | Tema Archive | 2014