The instantaneous local heat flux was determined under knocking conditions in a square piston engine simulator to investigate the relationship for the phase and magnitude between the heat flux and the knock intensity. Two platinum thin film resistance thermometers recorded variations of the the cylinder wall surface temperature at different locations. The wall heat fluxes were then calculated from the measured temperature variations. Schlieren pictures of the combustion process showed the motion of the burned gas during knocking.Pressure oscillations of about 5 kHz occurred after autoignition. Oscillations of the heat flux were at the same frequency and in phase with the pressure oscillations. The maximum heat flux increased almost linearly with the maximum amplitude of the pressure oscillations for pressure oscillations greater than 0.5 MPa. The rate of increase is not uniform spatially. Near the knocking zone, the maximum wall heat flux is 20 MW/m2 for a pressure oscillation of 3 MPa. This is about five times larger than for the non-knocking case. The time-integrated heat transfer at the wall near the knocking zone also increases almost linearly with the amplitude of the pressure oscillations. The integrated heat transfer reaches a value approximately twice that of the non-knocking case. Heat fluxes away from the knocking zone were less than the values in the region near the knocking zone.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Effect of Knock on Time-Resolved Engine Heat Transfer


    Additional title:

    Sae Technical Papers


    Contributors:
    Iiyama, A. (author) / Ezekoye, D. (author) / Lu, J.-H. (author) / Greif, R. (author) / Sawyer, R.F. (author)

    Conference:

    SAE International Congress and Exposition ; 1989



    Publication date :

    1989-02-01




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Effect of knock on time-resolved engine heat transfer

    Lu,J.H. / Ezekoye,D. / Iiyama,A. et al. | Automotive engineering | 1989


    Engine knock

    Engineering Index Backfile | 1942


    Engine knock

    Gaydon, A.G. | Engineering Index Backfile | 1942


    Engine knock

    Withrow, L. / Rassweiler, G.M. | Engineering Index Backfile | 1934