In this study, the combustion and emissions characteristics of n-butanol/GTL and n-butanol/ultra-low sulfur diesel (ULSD) blends are compared in a single-cylinder experimental diesel engine. The n-butanol was blended with a Fischer-Tropsch (FT) gas-to-liquid (GTL) fuel, at 25% and 50% mass. N-butanol was also blended with ULSD at the same mass ratios. FT fuels are an attractive alternative to petroleum based fuels because they can be used as a drop-in fuel with existing infrastructure. N-butanol is renewable fuel capable of being produced from waste biomass sources.The investigations were conducted at 1500 rpm and three loads of 2.75, 4.75, and 6.75 IMEP, representative for the research engine. 15% exhaust gas recirculation was utilized along with a supercharger to increase the intake pressure to 1.2 bar absolute. Neat ULSD and GTL, respectively, were investigated as a baseline. For all loads, the combustion pressures increased as the concentration of n-butanol in the blends increased. As a result of the lower cetane number (CN) of GTL, the GTL fuel and blends exhibited lower peak combustion pressures and heat release rates, when compared to the ULSD and ULSD blends.The low CN of n-butanol led to increased ignition delays for all blends from 1.0 to 1.9 ms. Although there was an observed extended ignition delay for the blends, CA50 occurred earlier for each blend when compared to the neat fuels.The GTL/n-butanol blends reduced soot by nearly 90%. However, neat GTL showed a considerable increase in soot when compared to ULSD. The GTL/n-butanol blends also produced 20% less NOx when compared to ULSD. At each tested engine load, the 50% n-butanol/50% GTL fuel blend (by mass) resulted in a simultaneous reduction in soot and NOX. The GTL fuel, which lacks aromatics aided in NOX reductions while the oxygenated n-butanol fuel further oxidized the particulate matter.The results indicate that the n-butanol blends are capable of controlling harmful emission formation while maintaining consistent engine operation. Further studies will include injection timing sweeps and increased injection pressure to control NOX formation.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Experimental Investigation on the Combustion and Emissions Characteristics of n-Butanol / GTL and n-Butanol/Diesel Blends in a Single-Cylinder MD-CI Engine


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    WCX™ 17: SAE World Congress Experience ; 2017



    Publication date :

    2017-03-28




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Experimental Investigation of Viscosity and Combustion Characteristics of N-Butanol/Diesel Blends

    Somers, Bart / Han, Jinlin / Wang, Yu | SAE Technical Papers | 2021


    Butanol-Diesel Blends for Partially Premixed Combustion

    Johansson, B.H. / Leermakers, C.A.J. / Somers, L.M.T. et al. | SAE Technical Papers | 2013


    Experimental Investigation and Analysis of Combustion Process in a Diesel Engine Fueled with Acetone-Butanol-Ethanol/ Diesel Blends

    Lee, Chia-Fon / Zhang, Jiaxiang / Nithyanandan, Karthik et al. | SAE Technical Papers | 2016


    Experimental Investigation on the Combustion and Emissions of a Light Duty Diesel Engine Fuelled with Butanol-Diesel Blend

    Corcione, Felice Esposito / Valentino, Gerardo / Iannuzzi, Stefano | SAE Technical Papers | 2013


    Effect of Butanol Isomer on Diesel Combustion Characteristics of Butanol/Gas Oil Blend

    Kinoshita, Eiji / Fushimi, Kazuyo / Yoshimoto, Yasufumi et al. | SAE Technical Papers | 2013